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Introduction 

The ability to computationally predict the binding structure of protein-ligand complexes is critical in the 
field of drug development. Computational docking tools exist that are able to accurately predict the binding 
modes of protein-ligand complexes but accuracy decreases as the size of the ligand increases. This problem is 
of particular concern in the development of individualized immunotherapy treatments for cancer patients, which 
rely on predicting the structure of the complex resulting from human leukocyte antigen (HLA) proteins binding 
to peptides produced by tumor cells. These peptides are large in size and existing docking tools fail to predict 
the peptide-HLA complex binding structure [1]. 

The Kavraki Lab has developed a novel computational docking tool, known as DINC 2.0, to better 
predict the binding modes of these challenging complexes. DINC 2.0 relies on a docking protocol that allows 
existing docking tools to dock fragments of a large peptide incrementally. An array of docking tools exists; our 
lab has used both Autodock4 and Vina and has determined that Vina generally yields better results. We have 
used Vina as the docking tool in the experiments described in this report. Initially, the ligand is split into a user-
specified number of fragments. In each round of docking the fragment is expanded to include the atoms from 
the subsequent fragment. At each round only a select number of bonds are considered flexible. Vina will find 
multiple binding modes and the best n-modes are selected to use as the basis for the next round of docking (n 
corresponds to the DINC parameter “number of docking tasks”). The docking rounds proceed until the whole 
ligand has been reassembled and docked. 

Our research aims at evaluating DINC 2.0 on two datasets of protein-peptide complexes from the 
literature. DINC is evaluated on how well it is able to reproduce the structure of the known bound complex. Our 
goal is to identify a protocol for parameters that consistently generates accurate binding structures for an 
arbitrary complex. In particular the experiments described in this report focus on evaluating the effects of 
different values for the following parameters: exhaustiveness, number of docking tasks and fragment size. 
Achieving consistency is a critical step towards the capability of modeling the structure of unknown peptide-
HLA complexes. 
 
Methods 
We selected two datasets from the literature to evaluate in our benchmarking experiments (known as the 
Renard dataset and the LEADS dataset). These datasets were selected because they are known to contain 
complexes that are particularly challenging for docking software to model.  

We conducted several experiments in order to identify the effects of different parameter values. The 
parameters of the program that we examined included: exhaustiveness, the number of docking tasks and the 
size of the molecular fragment at each step of docking. Exhaustiveness is a parameter tied to the underlying 
docking software, Vina, which expresses how thoroughly Vina explores the conformation search space while 
docking a molecular fragment. The number of docking tasks refers to how many molecular conformations are 
produced at each round of docking.  The greater the number of docking tasks, the greater the chance that a 
good result is produced. Finally, the size of the molecular fragment used in docking is related to the 
incremental aspect of DINC. Since DINC is an incremental docking protocol, at each step of docking only a 
fragment of the whole ligand is docked using the molecular docking tool (Vina in this case). 
Our first experiment explored the effects of setting the exhaustiveness parameter at 8 (the recommended best 
value from Vina) and 100 (an arbitrarily high value) in order to determine which would provide the best results 
and what the computational cost of increasing exhaustiveness would be. For the second experiment we 
compared the results obtained using 3, 6, 12, 24 and 36 docking tasks, but without involving the incremental 
process (i.e., by having a fragment size larger than the ligand size). For the third experiment we compared the 
results obtained using fragment sizes starting at 6 degrees of freedom and increasing in increments of 6 up to 
the degrees of freedom of the largest ligand in the dataset (e.g. 6, 12, 18, 24…) [1]. We performed each of 
these experiments on both datasets. 
While the ultimate goal is to be able to use DINC to consistently model the structure of unknown protein-ligand 
complexes, in order to evaluate how well a protocol works we ran DINC on known protein-ligand complexes 



and calculated the root-mean-squared-deviation (RMSD) between the computationally identified binding mode 
and the known binding mode. The RMSD was measured in angstroms (Å). 
 
Results 
Experiment 1: Varying Exhaustiveness 
 
Table 1. Effect of Exhaustiveness- Renard and LEADS Dataset 

 
 
Over the entire Renard dataset the average RMSD for all complexes using exhaustiveness 8 was 4.55 Å. With 
exhaustiveness 100 that number improved to 4.39 Å. This is a 0.16 Å decrease in RMSD, which required 4 to 5 
times more computation. Over the entire LEADS dataset the average RMSD for all complexes using 
exhaustiveness 8 was 4.95 Å. With exhaustiveness 100 that number improved to 4.26 Å. This is a 0.69 Å 
decrease in RMSD. 
 
Experiment 2: Varying Number of Docking Tasks 
 
Figure 1. Number of Docking Tasks- Renard Dataset       Figure 2. Number of Docking Tasks- LEADS Dataset 

          
 
In Figure 1 and Figure 2 we see that as we increase the number of docking tasks used by DINC, the average 
RMSD over the entire dataset decreases. This behavior is exhibited by both the Renard and the LEADS 
dataset. However, especially for the LEADS Dataset, we see that there is not much improvement in RMSD 
moving from 12 docking tasks to 24 docking tasks. The Renard Dataset does not experience as dramatic a 
plateau between 12 docking tasks and 24 docking tasks. 
 

  

Exhaustiveness Renard LEADS

8 4.55 4.95

100 4.39 4.26

Average RMSD (Å)



Experiment 3: Varying Fragment Size 
 
Figure 3. Fragment Size Results- Renard Dataset 

 
 
Complexes in the Renard Dataset with more than 18 degrees of freedom (the category with the largest ligands) 
can be categorized into two groups based on their behavior with different fragment sizes. The first category 
includes those complexes for which a fragment size of 6 is optimal. The second category includes complexes 
for which it is better to consider the ligand as a whole instead of in fragments (fragment size 24). 
 
Figure 4. Fragment Size Results- LEADS Dataset 

 
 



The LEADS Dataset contains large complexes than the Renard dataset contains. Figure 4 includes complexes 
with more than 36 degrees of freedom. The behaviors in Figure 4 appear more chaotic than those in Figure 3. 
This is not surprising, since results are a subset of conformations produced by the docking software. For the 
experiments reported in Figures 3 and 4 only 6 docking tasks were used, so variability is to be expected. 
Figure 4 shows that for most of the complexes with more than 36 degrees of freedom docking the ligand as a 
whole is better than using any smaller fragment size. However, there are several complexes for which the 
minimum is achieved at a fragment size somewhere between 6 degrees of freedom and 54 degrees of 
freedom. 
 
Discussion 
As demonstrated by the results summarized in Table 1, increasing exhaustiveness did not significantly improve 
the results found for either the Renard or the LEADS dataset. We determined that the slight improvements in 
RMSD results found using a high exhaustiveness are not worth the significant increase in computation cost. 
In our second experiment we examined the effect of increasing the number of docking tasks on the results 
obtained for individual complexes. For many of the complexes increasing the number of docking tasks 
decreased the RMSD significantly. However, several of the complexes experienced little improvement in 
RMSD. These more challenging complexes were of particular interest going into our third experiment. 
In the third experiment we examined the effect of fragment size on the success of the incremental approach in 
docking challenging complexes. The results did not allow us to identify one “magic bullet” number for fragment 
size that worked best for all complexes. 
 
Conclusion 
The results of the three experiments provided several important insights into how to optimize the parameters of 
DINC to consistently produce good results. Increasing the exhaustiveness to 100 did not yield a significant 
improvement in average RMSD. As a result, all further experiments were run with exhaustiveness 8 (the Vina 
recommended value). The more docking tasks that are used the better results we see, although the average 
RMSD results begin to experience diminishing returns around 12 docking tasks for the LEADS Dataset. We 
also determined that there is not one fragment size that will work best for all complexes. However, the results 
did guide us toward several future directions for further experimentation. One is for the development of several 
protocols, which when run as a battery will consistently yield good results for any complex. Another is to 
change the fragment size used based on the size of each individual complex. 
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